Inorganic Chemistry

Structural Characterization of a Methylaluminoxane (MAO)–Magnesium Dichloride Cluster: Model of MAO Grafted onto a MgCl₂ Support

Łukasz John, Józef Utko, Lucjan B. Jerzykiewicz, and Piotr Sobota*

Faculty of Chemistry, University of Wrocław, 14 F. Joliot-Curie, 50-383 Wrocław, Poland

Received August 24, 2005

The study outlines our initial results that contribute to a better understanding of MAO/MgCl₂ (MAO = methylaluminoxane) incorporation in the Cp₂ZrCl₂/MAO/MgCl₂ catalytic system, which is currently of global industrial use. We show here that the[Al₃(μ_3 -O)(Me)₅]²⁺ moiety can be trapped by the tetrapodal [Mg₃Cl₄(thffo)₄(THF)]²⁻ macrounit to form a cluster [Al₃Mg₃(μ_3 -O)(thffo)₄(Me)₅Cl₄(THF)] (thffo = 2-tetrahydrofurfuroxide). From this perspective, this macrounit might be considered as a part of the MgCl₂ support surface, which fulfills the requirement of a Al₃(μ_3 -O) core.

Ziegler–Natta catalysis is consistently one of the most important and profitable petrochemical processes.¹ Over the years, the catalyst, from simple crystalline TiCl₃, has evolved into the high-technology system incorporating SiO₂ or MgCl₂ as a support for TiCl₄.² Magnesium dichloride as a carrier for the single-site metallocene catalysts has been studied far less extensively than silica.³ A comprehensive contribution to this topic is provided by Chen and Marks.^{3b} MgCl₂supported metallocene reacted with methylaluminoxane (MAO) forms a catalyst that exhibits activity two times higher in ethylene polymerization than silica-supported analogues.⁴ Hence, studies on the interaction between each of the catalyst components and the MgCl₂ surface are of great importance.

Recently, we have found that in a reaction of $[Mg_4(thffo)_8]$ (thffo = 2-tetrahydrofurfuroxide) with AlMe₃ the $[Al_3(\mu_3 - \mu_3)]$

10.1021/ic051441s CCC: \$30.25 © 2005 American Chemical Society Published on Web 11/11/2005

O)(Me)₆]⁺ moiety is formed. This can be trapped by a tripodal [Mg(thffo)₃]⁻ unit to form molecular solid [Al₃Mg- $(\mu_3$ -O)(thffo)₃(Me)₆] (1).⁵ The present paper is our contribution to the understanding of the nature of the MAO/MgCl₂ adduct that, until now, has not been resolved and which takes an active part in the metallocene catalytic system. Here we describe our initial studies on the reaction of Cp₂ZrCl₂ with **1**.

The precursor **1** and 1 equiv of Cp_2ZrCl_2 were combined at room temperature as shown in Scheme 1. After 1 h, the solution became cloudy and a precipitate of $[MgCl_2(THF)_2]$ settled. No gas evolution was observed. Workup gave neutral air-sensitive crystalline $[Al_3Mg_3(\mu_3-O)(thffo)_4Cl_4(Me)_5(THF)]$ (**2**) in 10% isolated yield and a colorless rubberlike side product. The product **2** is reasonably stable as a solid and can be stored under a dinitrogen atmosphere. It gave satisfactory microanalysis.

The ¹H NMR spectrum of the side product shows signals characteristic for a THF polymer and resonances of a Cp ring typical for metallocene species. It is known that THF

Inorganic Chemistry, Vol. 44, No. 25, 2005 9131

^{*} To whom correspondence should be addressed. E-mail: plas@ wchuwr.chem.uni.wroc.pl.

 ⁽a) Thayer, A. M. Chem. Eng. News 1995, 73, 15. (b) Schumacher, J. Chemical Economics Handbook; SRI International: Menlo Park, CA, 1994; p 50.

^{(2) (}a) Corradini, P.; Barone, V.; Fusco, R.; Guerra, G. *Eur. Polym. J.* 1979, *15*, 1133; 1980, *16*, 835. (b) Corradini, P.; Barone, V.; Fusco, R.; Guerra, G. *J. Catal.* 1980, *77*, 32. (c) Venditto, V.; Corradini, P.; Guerra, G.; Fusko, R. *Eur. Polym. J.* 1991, *27*, 45. (d) Cavallo, L.; Guerra, G.; Corradini, P. *J. Am. Chem. Soc.* 1998, *120*, 2428. (e) Sobota, P.; Szafert, S. *J. Chem. Soc., Dalton Trans.* 2001, 1379.

⁽³⁾ For some recent reviews, see: (a) Hlatky, G. G. Chem. Rev. 2000, 100, 1347. (b) Chen, E. Y. X.; Marks, T. Chem. Rev. 2000, 100, 1391. (c) Gibson, V. C.; Spitzmesser, S. K. Chem. Rev. 2003, 103, 283. (d) Böhm, L. L. Angew. Chem., Int. Ed. 2003, 42, 5010. (e) Bochmann, M. J. Chem. Soc., Dalton Trans. 1996, 255. (f) Kaminsky, W. J. Chem. Soc., Dalton Trans. 1998, 1413.

^{(4) (}a) Lin, Z. PCT Int. Appl. 99/21898, 1999; Chem. Abstr. 1999, 130, 325492. (b) Bailly, J. C.; Bres, P.; Chabrand, C.; Daire, E. U.S. Patent 5,106,804, 1992; Chem. Abstr. 1991, 115, 72464. (c) Sacchetti, M.; Pasquali, S.; Govoni, G. U.S. Patent 5,698,487, 1997; Chem. Abstr. 1996, 124, 177225. (d) Bailly, J. C.; Chabrand, C. J. Eur. Pat. Appl. 435,514, 1991; Chem. Abstr. 1991, 115, 160013. (e) Sensarma, S.; Sivaram, S. Eur. Pat. Appl. 878,484, 1998; Chem. Abstr. 1999, 130, 4188. (f) Sensarma, S.; Sivaram, S. Eur. Pat. Appl. 878,486, 1998; Chem. Abstr. 1999, 130, 4189. (g) Sensarma, S.; Sivaram, S. Macromol. Chem. Phys. 1997, 198, 495. (h) Sensarma, S.; Sivaram, S. Macromol. Chem. Phys. 1999, 200, 323. Soga, K.; Arai, T.; Jozumi, T. Polymer 1997, 38, 4993. Arai, T.; Soga, K.; Uozumi, T. Jpn. Laid-Open Appl. 10/292007, 1998; Chem. Abstr. 1999, 130, 4201.

⁽⁵⁾ Sobota, P.; Utko, J.; Ejfler, J.; Jerzykiewicz, L. B. Organometallics 2000, 19, 4929.

Figure 1. View of **2**. H atoms are not shown. Selected interatomic distances [Å]: Mg(1)–O(30), 2.070(4); Mg(1)–Cl(3), 2.375(2); Mg(1)–Cl(2), 2.397(2); Mg(1)–Cl(1), 2.610(2); Mg(2)–O(21), 2.030(3); Mg(2)–O(11), 2.039(2); Mg(2)–O(20), 2.067(3); Mg(2)–O(10), 2.071(3); Mg(2)–Cl(1), 2.519(2); Mg(2)–Cl(2), 2.538(2); Mg(2)–C(15), 2.847(3); Mg(2)–C(25), 2.868(4); Al(1)–O(11), 1.792(2); Al(1)–O(1), 1.793(3); Al(1)–C(3), 1.971(4); Al(2)–O(21), 1.817(2); Al(2)–O(1), 1.821(2); Al(2)–C(2), 1.977(4); Al(2)–C(1), 2.013(3). Symmetry transformations used to generate equivalent atoms: x, $-y + \frac{1}{2}$, z.

can undergo ring-opening polymerization after coordination to a metal site.⁶ The zirconium species has not been isolated yet in pure form. The ²⁷Al NMR spectrum of **2** in C₆D₆ shows resonances at 158 and 181 ppm. These are typical for chlorinated methylaluminum species such as Me₂AlCl and [Me₂AlCl]₂⁷ that suggest decomposition of **2** in solution.

The X-ray crystal structure of **2** was determined,⁸ and the overall view is shown in Figure 1. The Al₃(μ_3 -O) cores in **1** and **2** are similar. The significant difference is that one of the methyl groups of the [Al₃(μ_3 -O)(Me)_6]⁺ moiety in **1** is replaced by an alkoxo O atom of the thffo ligand in **2**, providing in return alkyl functions (see Scheme 1). The [Mg₃Cl₄(thffo)₄(THF)]²⁻ macrounit in **2** contains two types of magnesium centers: two Mg atoms are six-coordinated surrounded by four μ -O_{alkoxide}, μ -Cl, and μ_3 -Cl atoms, and one is five-coordinated surrounded by two μ -Cl, one μ_3 -Cl, one terminal Cl, and an O of the coordinated THF molecule.

For a deeper understanding of the reaction pathway for the formation of cluster **2**, we studied the interaction of magnesium alkoxides with AlMe₃. The reaction of $[Mg_4(thffo)_8]$ with 2 equiv of AlMe₃ in toluene afforded an air-sensitive $[Mg(thffo)_2(AlMe_3)_2]$ (**3**), but it could be neither crystallized nor obtained in analytically pure form. Nevertheless, its spectroscopic data clearly show the analogy with related species $[Mg(thpm)_2(AlMe_3)_2]$ (**4**) (thpm = tetrahydropyran-2-methoxide). Compound **4** was obtained in crystalline form and identified by elemental analysis, spectroscopic data, and X-ray diffraction study. Unfortunately,

Scheme 3. $[Al_3(\mu_3\text{-O})(Me)_5]^{2+}$ Moiety Trapped by the Tetrapodal $[Mg_3Cl_4(thffo)_4(THF)]^2-$ Macrounit

the structure of **4** was not determined completely in view of low-quality crystals. Nonetheless, the structure is clearly visible and can be discussed. An overall view of the molecule is presented in Scheme 2.

The monomeric complex **4** contains a four-coordinated Mg atom surrounded by four O atoms of two bidentate thpm ligands and two AlMe₃ molecules attached to the alkoxo O atoms of the Mg(thpm)₂ unit to give the molecular solid [Mg(thpm)₂(AlMe₃)₂] (Scheme 2). According to this, it is also possible that the [Al₃(μ_3 -O)(Me)₅]²⁺ moiety was trapped by the tetrapodal [Mg₃Cl₄(thffo)₄(THF)]²⁻ macrounit during the formation of **2** (Scheme 3). Preliminary tests of the catalytic properties of **2** for ethylene polymerization have shown no activity.

Some alkylaluminoxanes have been characterized crystallographically by Barron and co-workers, who obtained them by partial hydrolysis of aluminum alkyls.⁹ Thus, hydrolysis of Al('Bu)₃ gave tetranuclear [Al₄(μ_3 -O)₂('Bu)₈], together with [Al₈(μ_3 -O)₈('Bu)₈].

In summary, our study contributes to a novel approach to the better understanding of the MAO/MgCl₂ adduct, which exploits the properties of MgCl₂ and is currently of global industrial use.^{3a} The solid-state structures offer little assistance in the understanding of the reaction pathways involved in the formation of **2**. We believe that in the first step Cp₂ZrCl₂ reacts with **1**, terminating the cluster structure. The driving force for this reaction is the formation of MgCl₂. The substitution of two Cl's, in Cp₂ZrCl₂, perhaps by Me and thffo groups leads first to the formation of highly active zirconium metallocene intermediate, which catalyzes immediately the polymerization of THF. The MgCl₂ side product in solution undergoes ionization¹⁰ and suffers agglomeration with Mg(thffo)₂ (rising from **1**) to form

^{(6) (}a) Penczek, S.; Kubisa, P.; Matyjaszewski, K. Adv. Polym. Sci. 1980, 37, 1. (b) Dreyfuss, P.; Dreyfull, M. P. Comprehensive Chemical Kinetics; Elsevier: Amsterdam, The Netherlands, 1976; Vol. 15, p 259. (c) Woodhouse, M. E.; Lewis, F. D.; Marks, T. J. J. Am. Chem. Soc. 1982, 104, 5586.

⁽⁷⁾ Lewiñski, J. Heteronuclear NMR Applications (B, Al, Ga, In, Tl). In Encyclopedia of Spectroscopy and Spectrometry; Lindon, J. C., Tranter, G. E., Holmes, J. L., Eds.; Academic Press: London, 1999; Vol. 1, pp 691–703.

⁽⁸⁾ Crystal data: $C_{29}H_{59}Al_3Cl_4Mg_3O_{10}$, fw = 863.43, monoclinic, P_{21}/m (No. 11), T = 100(2) K, a = 9.434(5) Å, b = 16.963(5) Å, c = 13.990(5) Å, $\beta = 104.903(5)^\circ$, V = 2163.5(15) Å³, Z = 2, $D_{calc} = 1.334$ g·cm⁻³, μ (Mo K α) = 0.424 cm⁻¹, final R1 = 0.0577 ($I > 2.00\sigma$ -(I)), R = 0.0727 (all data) wR2 = 0.1576 (all data), GOF = 1.046.

^{(9) (}a) Koide, Y.; Barron, A. R. Organometallics 1995, 14, 4026. (b) Mason, M. R.; Smith, J. M.; Bott, S. G.; Barron, A. R. J. Am. Chem. Soc. 1993, 115, 4971. (c) Koide, Y.; Harlan, C. J.; Mason, M. R.; Barron, A. R. Organometallics 1994, 13, 2957. (d) Koide, Y.; Bott, S. G.; Barron, A. R. Organometallics 1996, 15, 22.

⁽¹⁰⁾ Sobota, P. Polyhedron 1992, 7, 715.

Scheme 4. Reaction Scheme Proposed for $[Mg_3Cl_4(thffo)_4(THF)]^{2-1}$ Macrounit Formation

 $[Mg_3Cl_4(thffo)_4(THF)]^{2-}$ (Scheme 4). From this perspective, this macrounit might be considered as a tetrapodal part of the MgCl₂ support surface, which fulfills the requirement

COMMUNICATION

of a Al₃(μ_3 -O) core (Scheme 3). Further studies are needed to explain the mechanism of alkylaluminum species formation as a result of the decomposition of **2** in hydrocarbons.

Acknowledgment. We thank the State Committee for Scientific Research (Poland) for support of this research (Grant 3 T09A 158 26).

Supporting Information Available: Text and tables giving experimental and crystallographic details. Crystallographic data are also available as CIF files. This material is available free of charge via the Internet at http://pubs.acs.org.

IC051441S